Nonlinear system modeling and robust predictive control based on RBF-ARX model
نویسندگان
چکیده
An integrated modeling and robust model predictive control (MPC) approach is proposed for a class of nonlinear systems with unknown steady state. First, the nonlinear system is identified off-line by RBF-ARX model possessing linear ARX model structure and state-dependent Gaussian RBF neural network type coefficients. On the basis of the RBF-ARX model, a combination of a local linearization model and a polytopic uncertain linear parameter-varying (LPV) model are built to approximate the present and the future system’s nonlinear behavior, respectively. Subsequently, based on the approximate models, a min–max robust MPC algorithm with input constraint is designed for the output-tracking control of the nonlinear system with unknown steady state. The closed-loop stability of the MPC strategy is guaranteed by the use of parameter-dependent Lyapunov function and the feasibility of the linear matrix inequalities (LMIs). Simulation study to a NOx decomposition process illustrates the effectiveness of the modeling and robust MPC approaches proposed in this paper. r 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
Rbf-arx Model-based Robust Mpc for Nonlinear Systems
An integrated modeling and robust model predictive control (MPC) approach is proposed for a class of nonlinear systems. First, the nonlinear system is identified off-line by a RBF-ARX model possessing linear ARX model structure and state-dependent Gaussian RBF neural network type coefficients. On the basis of the RBF-ARX model, a combination of a local linearization model and a polytopic uncert...
متن کاملRBF-ARX model-based nonlinear system modeling and predictive control with application to a NOx decomposition process
This paper considers the modeling and control problem for nonstationary nonlinear systems whose dynamic characteristics depend on time-varying working-points and may be locally linearized. It is proposed to describe the system behavior by the RBFARX model, which is an ARX model with Gaussian radial basis function (RBF) network-style coefficients depending on the working-points of a system. The ...
متن کاملThe Rbf-arx Model Based Modeling and Predictive Control for a Class of Nonlinear Processes
This paper considers modeling and control problems of the non-stationary nonlinear processes whose dynamics depends on the working point. A hybrid RBF-ARX model-based predictive control (MPC) strategy without resorting to on-line parameter estimation for this kind of processes is presented. The RBF-ARX model is composed of the RBF networks and a rather general form of ARX model, which is identi...
متن کاملThree Tank System Control Using Neuro - Fuzzy Model Predictive Control
Three-tank (3T) system is the most representative didactical equipment used as a bench mark system for system modeling, identification and control. A real target representing 3T system has been used for generating data that is used for developing a linear model based on autoregressive exogenous (ARX) method, and neuro-fuzzy (NF) network technique. The developed models have been used as an inter...
متن کاملApplication of ANN Technique for Interconnected Power System Load Frequency Control (RESEARCH NOTE)
This paper describes an application of Artificial Neural Networks (ANN) to Load Frequency Control (LFC) of nonlinear power systems. Power systems, such as other industrial processes, have parametric uncertainties that for controller design had to take the uncertainties in to account. For this reason, in the design of LFC controller the idea of robust control theories are being used. To improve ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 20 شماره
صفحات -
تاریخ انتشار 2007